Bovine Diseases

By LTC Dana E. McDaniel
Agenda

- Anthrax
- Brucellosis
- Clostridial Diseases
- Foot and Mouth Disease
- Hemorrhagic Septicemia
- Bovine Tuberculosis
Anthrax

• Etiology
 – Zoonotic disease of livestock causing sudden death in grazing animals and serious economic loss to farmers
 – Caused by spore forming bacterium, *Bacillus anthracis*
 – Incidence of the disease may be high during drought or following flooding

• Transmission
 – Transmission via infective spores in soil; spores remain infective for many years
 – Spores ingested while grazing
 – Pastures infected by animals that died of anthrax and spores released into soil as the carcass decomposes
 – Spores may also enter the body by inhalation or through the skin
Anthrax

http://w3.vet.cornell.edu/nst/nst.asp?Fun=Image&imgID=9616
Anthrax

• Species affected
 – Affects wild and domestic herbivores: cattle, sheep, goats, camels
 – Can also affect humans exposed to tissues from infected animals, contaminated animal products, or directly by the spores (zoonotic)
 – Never eat the meat of animals suspected of dying from anthrax
Anthrax

• Clinical signs
 – Incubation period is 3-7 days
 – Peracute form has sudden onset and rapid death
 – Acute form has abrupt fever and a period of excitation followed by depression, stupor, respiratory or cardiac distress, staggering, convulsions and death
 – Body temperature may reach 41.5C, rumination ceases, milk production is reduced, and pregnant animals may abort
 – There may be bloody discharges from body openings
Anthrax

• Pathologic findings
 – Never open the body of an animal that is suspected of dying of anthrax (do not butcher)
 – Bacteria survive in the pasture for many years as spores
 – Rigor mortis is absent or incomplete
 – Dark, tarry blood may ooze (fails to clot) from body openings with marked bloating and rapid body decomposition
 – Enlarged, dark red or black, soft, semifluid spleen is common
 – Liver, kidneys, and lymph nodes are congested and enlarged
 – Meningitis may be found if the skull is opened
Anthrax

Multiple foci of hemorrhages and fibrin debris (submaxillary Inn.)
Anthrax

- Diagnosis
 - Difficult to diagnose by clinical signs alone
 - Confirmatory lab exam should be attempted if anthrax is suspected
 - Diagnosis by lab confirmation: submit cotton swab dipped in the blood and allowed to dry
 - Lab tests may include bacterial culture, PCR, and fluorescent antibody stains to see the agent in blood films
 - Differentiate from other “sudden death” diseases such as: clostridial infections, bloat, and lightning strike
 - Also, consider acute leptospirosis, bacillary hemoglobinuria, anaplasmosis, and acute poisonings by bracken fern, sweet clover, and lead
Anthrax

• Treatment
 – Implement a preventive program to reduce losses among livestock
 – Livestock at risk should be treated with a long-acting antibiotic such as oxytetracycline and then vaccinated 7-10 days after the antibiotic treatment
 – Any animals becoming sick after initial treatment and or vaccination should be retreated immediately and revaccinated one month later
Anthrax

• Prevention and Control
 – Through vaccination programs, rapid detection and reporting, quarantine, treatment of asymptomatic animals (postexposure prophylaxis), and burning or burial of suspect and confirmed cases.
 – Vaccinate livestock 2-4 weeks before the grazing season
 – Vaccination protection lasts for about one year and should be repeated annually
Brucellosis

• Etiology
 – Caused by *Brucella abortus* bacterium; also called Bang’s disease

• Transmission
 – Spread by contact with aborted tissues and fluids
 – Discharges then contaminate pasture and feed
 – Infection usually occurs via ingestion, but may also occur through the skin or eye
 – Zoonotic disease, so wear gloves when handling aborted fetuses and burn or bury any placentas and fetuses not needed for diagnostics and pasteurize milk for human consumption
Brucellosis

- **Clinical signs**
 - Causes abortions in the second half of gestation (usually about 7 months), produces weak calves, retained placenta or causes cows to have trouble breeding back
 - Abortion or stillbirth occurs 2 weeks to 5 months after initial infection
 - Orchitis and inflammation of the accessory sex glands may occur in males
Brucellosis

• Pathologic findings
 – Affected cotyledons may be normal to necrotic, and red or yellow
 – The intercotyledonary area is focally thickened with a wet, leathery appearance
 – The fetus may be normal or autolytic with bronchopneumonia
Brucellosis

Fibrin on lungs of bovine fetus

http://w3.vet.cornell.edu/nst/nst.asp?Fun=Image&imgID=5985
Brucellosis

Chronic active purulent periorchitis

http://w3.vet.cornell.edu/nst/nst.asp?Fun=Image&imgID=6498
Brucellosis

• Diagnosis
 – Diagnosis should only be attempted if fetal loss is >3-5% per year or per month due to low diagnostic success rate and high cost of lab work
 – Diagnosis made by maternal serology combined with fluorescent antibody staining of placenta and fetus or isolation of *B. abortus* from placenta, fetus, or uterine discharge

• Treatment
 – Treatment is unsuccessful
Brucellosis

- Prevention and Control
 - Use vaccines for prevention and control
 - Test and slaughter of carrier cows combined with calfhood vaccination are required for eradication
 - New bulls should be quarantined for 10-14 days before introducing to the herd in order to evaluate their health status and prevent transmission of venereal disease
 - Purchase bulls only from herds with a good herd health program and with a known health status
Clostridial Diseases

• Etiology
 – Caused by *Clostridia* bacteria which are large, anaerobic, spore-forming, rod-shaped organisms
 – Usually fatal; rapid death with blackquarter and pulpy kidney disease
 – Many names, depending on specific bacteria
 • *Cl. chauvoei* – blackleg/blackquarter; affects cattle and sheep
 • *Cl. haemolyticum* – bacillary hemoglobinuria; affects cattle and sheep
 • *Cl. perfringens* – types B, C, and D – enteroxemia, pulpy kidney disease; affects cattle, sheep and goats
Clostridial Diseases

• Transmission
 – Clostridial organisms are common in soil and the intestinal tracts of animals and are usually harmless
 – Under the right conditions, the bacteria grow rapidly and release toxins, quickly destroying tissue and often causing death
 – Flooding of low lying pasture may also bring the bacteria to the surface and increase the risk of exposure
 – These diseases are not contagious
Clostridial Diseases
Blackleg/Blackquarter

• Clinical signs
 – High incidence in summer and fall
 – Often affects the biggest and healthiest animals
 – In cattle, mostly affects those 6 months to 2 years old
 – In sheep, usually follows an injury or development of a wound
 – Sudden onset with a few animals found dead without signs
 – Acute lameness and marked depression
 – Initial fever, but normal to subnormal temperature once clinical signs begin
 – Edematous and crepitant swellings develop in hip, shoulder, chest, back, neck and elsewhere
 – Swelling is small, hot, and painful at first
 – As progresses, swelling enlarges, there is crepitation on palpation, and the skin becomes cold and insensitive as the blood supply diminishes
 – Death occurs in 12-48 hours
Clostridial Diseases
Blackleg/Blackquarter

• Pathologic findings
 – Edematous and crepitant swellings in hip, shoulder, chest, back and neck
 – Affected muscles are dark red to black, dry and spongy
 – Sweetish odor to muscle and is infiltrated with small bubbles, but with little edema
 – Lesions are small in sheep and in deep tissues, so may be overlooked
Clostridial Diseases
Blackleg/Blackquarter

Dark red to black of muscle often with a distinct odor of sour milk.
Clostridial Diseases
Blackleg/Blackquarter
Clostridial Diseases
Bacillary hemoglobinuria

• Clinical signs
 – Cattle may be found dead without any signs
 – Sudden onset of severe depression, fever, abdominal pain, dyspnea, dysentery, and hemoglobinuria
 – Anemia and jaundice in varying degrees
Clostridial Diseases
Bacillary hemoglobinuria

• Pathologic findings
 – Dehydration, anemia, sometimes subcutaneous edema
 – Bloody fluid in abdominal and thoracic cavities
 – Trachea contains bloody froth with hemorrhages in the mucosa
 – Small intestine and occasionally large intestine are hemorrhagic with free or clotted blood in their contents
 – An anemic infarct in the liver is virtually pathognomonic; it is slightly elevated, lighter in color, and outlined by a bluish red zone of congestion
 – Kidneys are dark, friable and usually studded with petechiae
 – The bladder contains dark urine
Clostridial Diseases
Bacillary hemoglobinuria
Clostridial Diseases
Bacillary hemoglobinuria
Clostridial Diseases
Enterotoxemia

• Clinical signs,
 – *Clostridium perfringens* Type B/C
 • Severe enteritis, dysentery, toxemia, and high mortality in young
 • Sudden death often first/only sign in lambs and kids
 • Some young may cry out before death, grind teeth, have muscular tremors, froth at mouth, have yellowish or bloody diarrhea, and convulsions
 • High levels of starchy foods in the diet and slowing of gut movement are predisposing factors
 • In calves, acute diarrhea, dysentery, abdominal pain, convulsions, and opisthotonos
 • Death may occur in a few hours
 • Less severe cases may survive a few days
 • Recovery period of several days is possible
Clostridial Diseases

Enterotoxemia

• Clinical signs,
 – *Clostridium perfringens* Type D
 • Pulpy kidney disease
 • Occurs in lambs less than 2 weeks old or weaned in feedlots and on a high carbohydrate diet; or may occur when fed on lush green pastures or with goats/calves
 • Usually sudden death in best conditioned lambs
 • May see excitement, incoordination, and convulsions before death
 • Opisthotonos, circling, and pushing the head against fixed objects are common signs of Central Nervous System involvement
 • Frequently, hyperglycemia or glucosuria
 • May or may not develop diarrhea
Clostridial Diseases

Enterotoxemia

- *Clostridium perfringens* Type D
Clostridial Diseases

Enterotoxemia

http://w3.vet.cornell.edu/nst/nst.asp?Fun=Image&imgID=17009
Clostridial Diseases
Enterotoxemia

• Pathologic findings
 – Hemorrhagic enteritis with ulceration of the mucosa is the major lesion in all species
 – Affected portion of the intestine is deep blue-purple and appears at first glance to be an infarction associated with mesenteric torsion
 – In young lambs, fluid-filled pericardial sac and hyperemic areas in the intestines
 – In older animals, hemorrhagic areas on the myocardium and petechiae/ecchymoses of abdominal muscles and intestinal serosa
 – Rapid post-mortem autolysis of the kidneys, but seldom found in affected goats or cattle
 – Hemorrhagic or necrotic enterocolitis may be seen in goats
Clostridial Diseases

• Diagnosis
 – Consider anthrax as a differential diagnosis for sudden death (if suspect anthrax, do not move or cut up the animal)
 – Confirm with lab testing to identify the bacteria or the toxin
 – Collect samples as soon as possible after death

• Treatment
 – Difficult to treat due to rapid progression
 – Use antitoxins when available in conjunction with antibiotic therapy, such as penicillin
Clostridial Diseases

• Prevention and Control
 – Proper management and vaccination
 – Booster mother with a multi-valent clostridial vaccine one month prior to birth date of young to increase the level of protection and period of time the young are protected
 – Ensure passive immunity through colostral transfer
 – Active immunity through two doses of vaccine 4-6 weeks apart; give first dose at 8 weeks of age or weaning time, when the protection from the dam’s milk begins to decline
 – Provide an annual booster before high risk periods to maintain protection
Foot and Mouth Disease

• Etiology
 – Also, AFTOSA
 – Highly contagious viral disease characterized by fever and vesicle formation in the mouth and feet
 – *Aphthovirus* in the Family Picornaviridae
 – Seven serotypes (A, O, C, SAT1, SAT2, SAT3, Asia1)
Foot and Mouth Disease

• Transmission
 – Most contagious disease known to exist
 – Infected animals exhale large quantities of virus which is then carried as an aerosol to other animals
 – FMDV can travel several miles on the wind
 – FMDV can survive within organic material such as bedding or manure
 – Animals can acquire the virus through oronasal exposure to the infected organic material
 – Affects all cloven-hoofed animals with cattle having a more severe form than sheep or goats
Foot and Mouth Disease

• Clinical disease
 – Incubation period 1-3 days
 – Morbidity approaches 100%
 – Fever, decreased activity, decreased feed consumption, small blisters on tongue, dental pad, feet, coronary band, interdigital cleft
 – Vesicles coalesce to become large, rupture and expose painful ulcers
 – Secondary infection occurs at exposed regions
 – Animals usually completely recover, but lose a great deal of condition during the short period of illness
 – Mortality is significant only in the very young due to heart muscle infection that leads to myocardial failure and sudden death
Foot and Mouth Disease

http://w3.vet.cornell.edu/nst/nst.asp?Fun=Image&imgID=10827
Foot and Mouth Disease

http://w3.vet.cornell.edu/nst/nst.asp?Fun=Image&imgID=10830
Foot and Mouth Disease

http://w3.vet.cornell.edu/nst/nst.asp?Fun=Image&imgID=6381
Foot and Mouth Disease

http://w3.vet.cornell.edu/nst/nst.asp?Fun=Image&imgID=6336
Foot and Mouth Disease

• Pathologic findings
 – Confirm with laboratory testing via complement fixation, ELISA, virus neutralization
 – Differential diagnoses include bluetongue, infectious bovine rhinotracheitis, bovine papular stomatitis, abrasive feed et al.

• Treatment
 – No specific treatment, but provide soft feed, dry environment to decrease problems from secondary infection
Foot and Mouth Disease

• Prevention and Control
 – Aimed at keeping infected animals and animal products from entering an area
 – Once endemic, control is by vaccination
 – Vaccines are serotype specific
 – Decontaminate infected premises using 2% acetic acid or sodium hypochlorite
Hemorrhagic Septicemia

• Etiology
 – Also, Pasteurellosis
 – Caused by bacterium, *Pasteurella multocida*, serotypes 6:B and 6:E (formerly B:2 and E:2)
 – 6:B is predominantly found in Asia
Hemorrhagic Septicemia

• Transmission
 – Transmitted by exposure to infected animals, carrier animals, or fomites
 – Precipitated by stress in animals harboring the organism subclinically
 – The bacteria do not survive well in the environment
 – Route of entry is presumed to be oronasal
 – After an outbreak, 20% of the survivors may be carriers down to less than 5% carriers after six months post-outbreak
 – Crowding/close contact facilitates spread
Hemorrhagic Septicemia

- **Species affected**
 - Affected animals are cattle 6-18 months old
 - Infrequently occurs in sheep

- **Clinical disease**
 - Short incubation period with high morbidity and high mortality
 - Clinical disease usually lasts less than 72 hours
 - First signs are dullness and reluctance to move
 - There may be respiratory distress, with frothing at the mouth, and recumbency
 - Edematous swellings can be seen in the throat region, neck and brisket
Hemorrhagic Septicemia

Hemorrhagic Septicemia

• Pathologic findings
 – Lesions seen are those of severe sepsis, with extensive damage to the capillary bed
 – Widely distributed hemorrhages and edema, especially of the head, neck, and brisket region
 – Incision of the edematous swellings reveals a coagulated, serofibrinous mass with straw-colored or blood-stained fluid
 – Petechiation is present in multiple organs and serosal surfaces
 – There may be serosanguinous effusions in body cavities
 – There is an interstitial reaction in the lung, typical of a toxic state, and represented by a diffuse congestion and a rubbery feel to the lungs grossly
Hemorrhagic Septicemia

Hemorrhagic Septicemia

• Diagnosis
 – Epidemiological and clinical features aid in recognition of the disease
 – Characteristic necropsy lesions support clinical diagnosis
 – In endemic regions, acute salmonellosis, anthrax, pneumonic pasteurellosis, and rinderpest should be considered for differential diagnosis
Hemorrhagic Septicemia

• Treatment
 – Usually, too late to start treatment
 – Prophylactic antibiotics may be given to the rest of the herd that is not yet clinically ill
 – Sulphonamides, tetracyclines, are effective if administered early

• Prevention and Control
 – Vaccination in endemic areas, with bacterins or a modified live product
 – Avoid crowding, especially during wet conditions, to reduce the incidence of disease
 – Animals to be shipped should be vaccinated
Bovine Tuberculosis (TB)

• Etiology
 – Chronic infectious and debilitating granulomatous disease caused by *Mycobacterium bovis*
 – *M. bovis* is a hardy bacterium that persists in the environment
 – *M. bovis* causes a progressive disease in most warm-blooded vertebrates, including humans (zoonotic)
Bovine Tuberculosis (TB)

• Transmission
 – By inhalation of infected droplets expelled from the lungs
 – Also, by ingestion, particularly contaminated milk

• Species affected
 – Infects predominantly cattle, rarely affects other mammals
 – Humans are quite susceptible to bovine TB
 – Infections in humans occurs through drinking infected raw milk, raw milk products, and through inhalation
Bovine Tuberculosis (TB)

• Clinical Signs
 – Progressive emaciation, lethargy, weakness, anorexia, and a low-grade, fluctuating fever
 – Respiratory form with bronchopneumonia causes a chronic, intermittent, moist cough with later signs of dyspnea and tachypnea
 – Granulomatous form with bronchopneumonia may detect destructive lesions on auscultation and percussion of the lungs
 – Superficial lymph node enlargement may be a useful diagnostic sign when present
 – Affected deeper lymph nodes cannot always be palpated, but they may cause obstruction of the airways, pharynx, and gut, leading to dyspnea and ruminal tympany
Bovine Tuberculosis (TB)

• Pathologic findings
 – TB granulomas may be found in any of the lymph nodes, particularly in bronchial, retropharyngeal, and mediastinal nodes
 – In the lungs, miliary abscesses may extend to cause a suppurative bronchopneumonia
 – The pus has a characteristic cream to orange color and varies in consistency from thick cream to crumbly cheese
 – TB nodules may appear on the pleura and peritoneum
Bovine Tuberculosis (TB)
Bovine Tuberculosis (TB)
Bovine Tuberculosis (TB)
Bovine Tuberculosis (TB)

http://w3.vet.cornell.edu/nst/nst.asp?Fun=Image&imgID=6677
Bovine Tuberculosis (TB)
Bovine Tuberculosis (TB)
Bovine Tuberculosis (TB)

• Diagnosis
 – Most important diagnostic test: Intradermal tuberculin test
 – Diagnosis by clinical signs alone is very difficult
 – Microscopic exam of sputum and other discharges is sometimes used
 – Necropsy findings include “tuberculous” granulomas
 – Confirmation of diagnosis is by isolation and identification of the organism by culture, usually taking 4-8 weeks, or by PCR, which takes a few days
Bovine Tuberculosis (TB)

• Treatment
 – May be illegal in some countries
 – Destruction of TB positive animals should be attempted due to zoonotic nature of the disease

• Prevention and Control
 – Main reservoir of infection is cattle
 – Test and slaughter policy for eradication
 – Testing every 3 months in an affected herd to get rid of infected individuals
 – Pasteurization of milk reduces incidence of human infection
Questions???

• And, thank you for your attentiveness
• Email: dana.mcdaniel@us.army.mil